Pada buku paket matematika kelas 8 semester 2 membahas materi tentang Perbandingan, Aritmatika Sosial, Garis dan Sudut, Segiempat dan Segitiga, dan Penyajian Data. Namun pada artikel kali ini secara urut kita akan membahas materi pertama yaitu tentang perbandingan. Pada Bab Perbandingan Sub Bab pertama yaitu kawan-kawan diharapkan dapat memahami dan menentukan perbandingan dua besaran. Pada artikel kali ini kami akan berbagi Alternative Jawaban Matematika Kelas 8 Semester 2 Ayo Kita Berlatih mudah-mudahan dengan artikel ini bisa membantu dan meningkatkan motivasi belajar matematika kawan-kawan semua. Baiklah langsung saja kita masuk ke intinya yaitu pembahasan soal latihan ayo kita berlatih kelas 8 semester 2.
1. Diketahui segitiga KLM dengan panjang sisi-sisinya k, l, dan m. Pernyataan berikut yang benar dari segitiga KLM adalah...
A. Jika m^2 = l^2 + k^2, besar ∠K = 90 o
B. Jika m^2 = l^2 − k2, besar ∠M = 90 o
C. Jika m2 = k^2 - l^2, besar ∠L = 90 o
D. Jika k^2 = l^2 + m , besar ∠K = 90o
jawaban : D
pembahasan :
Jika k^2 = l^2 + m^2
maka ∆ KLM siku siku di K
2. Perhatikan gambar berikut. Panjang sisi PQ = ... cm.
A. 10
B. 12
C. 13
D. 14
jawaban : A
pembahasan :
cara :
b^2 = 26^2 - 24^2
b = V676 - 575
b = V100
b = 10 cm
3. Diketahui kelompok tiga bilangan berikut.
A. (i) 3, 4, 5
B. (ii) 5, 13, 14
C. (iii) 7, 24, 25
D. (iv) 20, 21, 29
jawaban : tidak ada pilihan jawaban
pembahasan :
tripel pythagoras:
-kelompok tiga bilangan asli
- memenuhi teorema pythagoras
(a^2 + b^2= c^2)
(i) 3^2 + 4^2 = 5^2
9+ 16 = 25
25 = 25
tripel pythagoras
5^2 + 13^2 ≠ 14^2
25+ 169 ≠ 196
191 ≠ 196
Bukan tripel phytagoras
(iii) 7^2 + 24^2 = 25^2
49 + 576 = 625
625 = 625
tripel phytagoras
(iv) 20^2 + 21^2 = 29^2
400 + 441 = 841
841 = 841
Tripel phytagoras
Jadi yang merupakan tripel phytagoras (i), (iii) dan (iv)
Sebelum kita membahas soal lebih lanjut kita belajar kembali Tripel Phytagoras:
3 | 4 | 5 |
5 | 12 | 13 |
7 | 24 | 25 |
8 | 15 | 17 |
9 | 40 | 41 |
20 | 21 | 21 |
4. (i) 3 cm,5 cm, 6 cm
(ii) 5 cm, 12 cm, 13 cm
(iii) 16 cm, 24 cm, 32 cm
(iv) 20 cm, 30 cm, 34 cm
Ukuran sisi yang membentuk segitiga lancip ditunjukkan oleh...
A. (i) dan (ii) C. (ii) dan (iii)
B. (i) dan (iii) D. (iii) dan (iv)
jawaban : Tidak ada pilihan jawaban
pembahasan :
a^2 + b^2 > c^2 (segitiga lancip)
a^2 + b^2 = c^2 (segitiga siku-siku)
a^2 + b^2 < c^2 (segitiga tumpul)
(i) 3^2 + 5^2 < 6^2
9 + 25 < 36
34 < 36
(∆ tumpul)
(ii) 5^2 + 12^2 = 13^2
25 + 144 = 169
169 = 169
(∆ siku - siku)
(iii) 16^2 + 24^2 < 32^2
256 + 576 < 1024
832 < 1024
(∆ tumpul)
(iv) 20^2 + 30^2 > 34^2
400 + 900 > 1156
1300 > 1156
(∆ lancip)
5. Diketahui suatu layang-layang berkoordinat di titik K(−5, 0), L(0, 12),
M(16, 0), dan N(0, −12). Keliling layang-layang KLMN adalah...
A. 33 satuan
B. 52 satuan
C. 66 satuan
D. 80 satuan
jawaban : C
pembahasan :
XL = V(x2 - x^1)^2 + (y2 - y1) ^2
=V(0 - (-5))^2 + (12 -0)^2
= V5^2 + 12^2
= V25 + 144
= V169
XL = 13 satuan
LM = V(x3 - x2)^2 + (y3 - y2)^2
= V(16-0)^2 + (0-12)^2
= V16^2 + (-12)^2
= V256 + 144
= V400
LM = 20 satuan
Keliling KLMN = 13 + 20 + 20 + 13 = 66 satuan
6. Jika segitiga siku-siku PQR dengan panjang sisi siku-sikunya 4 dm dan 6 dm, maka panjang hipotenusa dari ∆PQR adalah...
A. 52 dm
B. 10 dm
C. 2V13 dm
D. V26 dm
jawaban : C
pembahasan :
C^2 = 462 + 6^2
= V16 + 36
= V52
= V4.13
C = 2V13 dm
7. Perhatikan peta yang dibuat Euclid di bawah
Bangunan manakah yang berjarak V40 satuan?
A. Taman Kota dan Stadion
B. Pusat Kota dan Museum
C. Rumah Sakit dan Museum
D. Penampungan Hewan dan Kantor polisi
jawaban : D
pembahasan :
A. T - s = 5 satuan
C^2 = 362 + 4^2
C = V9 + 16
C = V25
C = 5
B. P - M
C^2 = 6^2 + 1^2
C = V36 + 1
C = V37 satuan
C. RS - M
C^2 = 12^2 + 5^2
C = V144 + 25
C = V169
C = 13 satuan
D. H - K
C^2 = 6^2 + 2^2
C = V36 + 4
= V40 satuan
8. Di antara ukuran panjang sisi segitiga berikut, manakah yang membentuk segitiga siku-siku?
A. 10 cm, 24 cm, 26 cm
B. 5 cm, 10 cm, 50 cm
C. 4 cm, 6 cm, 10 cm
D. 8 cm, 9 cm, 15 cm
jawaban : A
pembahasan :
a^2 + b^2 = c^2
A. 10 cm, 24 cm, 26 cm
9. Suatu segitiga siku-siku memiliki panjang hipotenusa 17 cm dan panjang salah satu sisi tegaknya adalah 15 cm. Panjang sisi tegak lainnya adalah...
A. 6cm
B. 8 cm
C. 12 cm
D. 16 cm
jawaban : B
pembahasan :
Soal diatas masuk dalam tripel phytagoras
8 15 17
a^2 = c^2 - b^2
17^2 - 15^2
a = V289 - 225
= V64
= 8 cm
a = 8 cm
10. Panjang hipotenusa dan tinggi suatu segitiga siku-siku berturut-turut 25 cm dan 24 cm. Keliling segitiga tersebut...
A. 49 cm
B. 56 cm
C. 66 cm
D. 74 cm
jawaban : B
pembahasan :
soal diatas masuk dalam tripel phytagoras maka :
7 24 25
keliling = 7cm + 24 cm + 25 cm = 56 cm
11. Panjang sisi siku-siku suatu segitiga siku-siku berturut-turut adalah 4a cm dan 3a cm. Jika panjang sisi hipotenusanya adalah 70 cm, keliling segitiga tersebut adalah...
A. 136 cm
B. 144 cm
C. 168 cm
D. 192 cm
jawaban : C
pembahasan :
(3a)^2 + (4a)^2 = 70^2
9a^2 + 16a^2 = 70^2
25a^2 = 4900
a^2 = 4900/25
a^2 = V196
a = 14
3a = 3.14 = 42 cm
4a = 4.14 = 56 cm
K = 42 cm + 56 cm + 70 cm
= 168 cm
12. Sebuah kapal berlayar ke arah utara sejauh 11 km kemudian kapaltersebut berbelok ke arah barat dan berlayar sejauh 9 km. Jarak kapal dari titik awal keberangkatan ke titik akhir adalah...
A. V102 km
B. 102 km
C. V202 km
D. 202 km
jawaban : C
pembahasan :
s^2 = 11^2 + 9^2
s = V121 + 81
= V202 km
13. Luas trapesium pada gambar di bawah adalah...
A. 246 inci2
B. 266,5 inci2
C. 276 inci2
D. 299 inci2
jawaban : C
pembahasan :
L = (a + b)
_______ x t
2
= (18 + 28)
________ x 12
2
= 46 x 6
= 276 inci2
14. Kubus KLMN.PQRS di bawah memiliki panjang rusuk 13 cm. Panjang KM adalah ...
A. 13,5 cm
B. 13V2 cm
C. 13V3 cm
D. 13V6
jawaban : B
pembahasan :
Cara cepat =
panjang rusuk = a
panjang diagonal bidang = aV2
panjang diagonal ruang = aV3
panjang KM apabila 13 cm maka panjang KM = 13V2 cm
15. Nilai x yang memenuhi gambar di bawah adalah...
A. 5
B. 7
C. 8
D. 10
jawaban : A
pembahasan :
soal diatas termasuk tripel = 8 15 17
maka :
(3x -5)^2 = 6^2 + 8^2
3x - 5 = V36 + 64
3x - 5 = V100
3x -5 = 10
3x = 10 + 5
3x = 15
x = 5
16. Luas daerah yang diarsir dari gambar disamping adalah...
A. 5 dm2
B. 10 dm2
C. 12 cm2
D. 20 dm2
jawaban : A
pembahasan :
L = 50 cm x 10 cm
= 500 cm2
= 5 dm2
17. Perhatikan limas T.ABCD di bawah. Alas limas berbentuk persegi dengan panjang sisi 14 cm
dan panjang TO = 24 cm. Panjang TE adalah ....
A. 25 cm
B. 26 cm
C. 27 cm
D. 28 cm
jawaban : A
soal tripel 7 24 25
18. Panjang sisi AB pada gambar di bawah adalah ....
A. 12 cm
B. 12 V2 cm
C. 24 cm
D. 24 V2 cm
jawaban : B
pembahasan :
cara cepat :
hipotenusa dibagi 2 dikali V2
24cm/2 x V2 = 12V2
a^2 + a^2 = 24^2
2a^2 = 576
a^2 = 576/2
a^2 = 288
a = V144.2
=12V2
panjang AB = 12V2 cm
19. Panjang sisi PR pada gambar berikut adalah...
A. V3 cm
B. 3V3 cm
C. 4V3 cm
D. 6V3 cm
jawaban : C
pembahasan :
SR/3 = a/aV3
SR = a/aV3.3
SR = 3/V3.V3/V3
SR = 3V3/ 3
SR = V3
PR = PS + SR
PR = 3V3 cm + V3cm
= 4V3 cm
20. Perhatikan gambar jajargenjang ABCD berikut. Luas jajargenjang ABCD adalah...
A. 180 cm2
B. 90V3 cm2
C. 90 cm2
D. 90V3 cm2
jawaban : B/D
pembahasan :
L = a x t
L = 15 cm x 6V3 cm
L = 90V3 cm
1. Tentukan nilai a pada gambar berikut.
Jawaban :
(a + 4)^2 + (3a + 2)^2 = (3a + 4)^2
a^2 + 8a + 4^2+9a^2 + 12a + 2^2 = 9a^2 + 24 a + 4^2
a^2 + 9a^2 - 9a^2 + 8a + 12a - 24a + 20 - 16 = 0
a^2 - 4a + 4 = 0
(a-2)^2 = 0
a-2 = 0
a = 2
bentuk sederhana rumusnya adalah sebagai berikut :
(a+)^2 = a^2 + 2ab + b2
(a - b) ^2 = a^2 - 2ab + b^2
2. Tentukan apakah ∆ABC dengan koordinat A(−2, 2) ,B(−1, 6) dan C(3, 5) adalah suatu segitiga siku-siku? Jelaskan.
jawaban :
A (-2, 2) ; B (-1,6) ; C (3, 5)
x1 y1 x2 y2 x3 y3
AB = V(x2 - x1)^2 + (y2 - y1)^2
= V(-1-(-2))^2 + (6-2) ^2
= V1^2 + 4^2
= V1 + 16
AB = V17
BC = V(x3 - x)^2 + (y3 - y2)^2
= V(3 - (-1))^2 + (5-6)^2
= V4^2 + (-1)^2
= V16 + 1
= V17
panjang AB = BC = V17 satuan
AC = V(x3 - x1)^3 + (y3 - y1)^2
= V(3 - (-2))^2 + (5-2)^2
= V5^2 + 3^2
= V25 + 9
= V34 satuan
Sekarang kita cek apakah segitiga ini siku-siku
kita coba masukan ke rumus :
a^2 + b^2 = c^2
AB^2 + BC^2 = AC^2
(V17)^2 + (V17)^2 = (V34)^2
17 + 17 = 34
34 = 34
∆ ABC merupakan segitiga siku-siku karena sesuai dengan teorema phytagoras
3. Buktikan bahwa (a^2 - b^2), 2ab, (a^2 + b^2) membentuk tripel phytagoras
jawaban :
(x-y)^2 = x^2 - x^2 - 2xy + y^2
(x+y)^2 = x^2 + 2xy + y^2
((a^2 - b^2))^2 + (2ab)^2 = ((a^2 +b^2))^2
a^4 - 2a^2b^2 + b^4 + 4a^2b^2 = a^4 + 2a^b^2 + b^4
a^4 + b^4 + 2a^2b^2 = a^4 + b^4 + 2a^2b^2
a^2 + b^2 = c^2
(a^2 - b^2), 2ab (a^2 + b^2) merupakan tripel phytagoras
4. Perhatikan gambar berikut. Persegi ABCD mempunyai panjang sisi 1 satuan dan garis AC adalah diagonal.
a. Bagaimana hubungan antara segitiga ABC dan segitiga ACD?
b. Tentukan besar sudut-sudut pada salah satu segitiga tersebut.
c. Berapakah panjang diagonal AC? Jelaskan.
d. Misalkan panjang sisi persegi ABCD 6 satuan. Apakah yang berubah dari jawabanmu pada soal b dan c? Jelaskan
jawaban :
a. ∆ ABC dan ∆ ACD merupakan dua segitiga yang memiliki bentuk dan ukuran yang sama atau merupakan dua segitiga yang kongruen.
b. merupakan segitiga siku-siku sama kaki sehingga :
Memiliki besar sudut yang sama
m < CAD = 45 o
m < ACD = 45 o
m < ADC = 90 o
c. 1^2 + 1^2 = AC^2
V1 + 1 = AC
V2 = AC
d. Besar sudut-sudutnya tetap, yaitu m < CAD = 45 o, m < ACD = 45 o dan m < ADC = 90 o sedangkan panjang diagonal AC berubah menjadi 6V2 satuan
5. Tentukan nilai x dari gambar di bawah ini.
jawaban :
Tripel Phytagoras
8 15 17
c^2 = 8^2 + 15^2
c = V64 + 225
= V289
= 17
luas segitiga
a x t /2
= 17 x x/ 2
= 8 x 15/2
x = 8 x 15/17
= 120/17
x = 7 1/17 satuan
6. Tentukan keliling segitiga ABC di bawah ini
jawaban :
K = AB + BC + AC
= 8 + 4V3 + 1 1/3V3 + 2 2/3V3
= 8 + 8V3
= 8 (1+V3) satuan
7. Sebuah air mancur terletak di tengah perempatan jalan di pusat kota. Mobil merah dan mobil hijau sama-sama melaju meninggalkan air mancur tersebut. Mobil merah melaju dengan kecepatan 60 km/jam sedangkan mobil hijau 80 km/jam.
a. Buatlah tabel yang menunjukkan jarak yang ditempuh kedua mobil dan jarak kedua mobil tersebut setelah 1 jam, 2 jam, dan 3 jam. Gambarkan perubahan jarak tersebut.
b. Misalkan mobil merah melaju dengan kecepatan 40 km/jam. Setelah 2 jam jarak antara kedua mobil 100 km. Berapakah kecepatan mobil hijau pada saat itu?
Keterangan: Jarak kedua mobil yang dimaksud adalah panjang ruas garis yang menghubungkan kedudukan dua mobil tersebut.
pembahasan :
a.
b. kecepatan mobil merah 40 km/jam
waktu 2 jam
s = V x t
= 40 km/jam x 2 jam
= 80 km
tripel phytagoras
3 4 5
jarak mobil hijau dari pusat = 60 km
waktu = 2 jam
V = s/t
= 60 km/2 jam
= 30 km/jam
8. Perhatikan gambar segitiga ABC di bawah ini.
a. Tentukan keliling segitiga ACD.
jawaban :
AD + DC + CA
= 8cm + 8V3 cm + 16 cm
= 24 cm + 6V3 cm
= 8 (3 + V3) cm
Keliling ∆ ABC =
AB + BC + CA
= 32 cm + 16 V2 cm + 16 cm
= 48 cm + 16 V3 cm
= 16 (3 + V3) cm
b. Apakah hubungan antara keliling segitiga ACD dan ABC?
jawaban :
K ∆ ABC - K ∆ ACD =
= 16 (3 + V3) cm - 8 (3+V3) cm
= 8 (3+V3) cm
= selisih keliling ∆ ABC dan keliling ∆ ACD adalah 8 (3 + V3) cm
c. Apakah hubungan antara luas segitiga ACD dan ABC?
jawaban :
L ∆ ACD = a x t/2
= 8 cm x 8V3 cm
= 32 V3 cm^2
L ∆ ABC = a x t /2
= 32 xm x 8V3 cm/2
= 128 V3 cm2
L ∆ ACD : L ∆ ABC
32
___ V3 : 128/32 V3
32
perbandingan L ∆ ACD dan L ∆ ABC adalah 1 : 4
9. Gambar di bawah ini merupakan balok ABCD.EFGH dengan panjang 10 dm, lebar 6 dm, dan tinggi 4 dm. Titik P dan Q berurut-urut merupakan titik tengah AB dan FG. Jika seekor laba-laba berjalan di
permukaan balok dari titik P ke titik Q, tentukan jarak terpendek yang mungkin ditempuh oleh laba-laba.
jawaban :
P - F - Q =
PF = V4^2 + 5^2
= V16 + 25
= V41
= 6,4 dm
FQ = 1/2.6 dm = 3 dm
P - F - Q = 6,4 dm + 3 dm = 9,4 dm
P - B - Q =
RB = 5 dm
B - Q = 5 dm
P - B - Q = 5 dm + 5 dm = 10 dm
P-R-Q =
PR = V5^2 + Q^2
= V25 + 4
= V29
PR = 5,38 dm
RQ = V2^2 + 3^2
= V4 + 9
= V13
= 3,6
P = R - Q = 5,38 + 3,6 = 8,98 dm
P - F - Q = 9,4 dm
P - B - Q = 10 dm
P - R - Q = 8,98 dm
jarak yang terpendek yang mungkin ditempuh laba-laba adalah 8,98 dm
10. Pada gambar di bawah ini, ketiga sisi sebuah segitiga siku-siku ditempel setengah lingkaran.
a. Tentukan luas setiap setengah lingkaran.
b. Bagaimanakah hubungan ketiga luas setengah lingkaran tersebut?
jawaban :
a. L 1 = 1/2. π.r^2
=1/2. π. (3/4)^2
= 1/2. π. 3/4
= 9/8 π
L2 = 1/2. π. r^2
= 1/2. π. 2^2
= 1/2. π.4
L2 = 2 π
L3 = 1/2 π.r^2
= 1/2.Ï€ (5/2)^2
= 1/2 π. 25/4
= 25/8 π
b. L1 + L2 = L3
= 9/8 π + 2π = 25/8 π
= 9/8 π + 16/8 π = 25/8 π
= 25/8 π = 25/8 π
Jadi, luas dari setengah lingkaran yang berdiameter sama dengan jumlah luas setengah lingkaran yang berdiameter 3 cm dan 4 cm.
Ingat artikel ini hanyalah sekedar alternatif jawaban, adik-adik dapat mengerjakannya secara mandiri terlebih dahulu di rumah, kebenaran soal jawaban adalah hak mutlak dari guru pengajar.